
Epidemiological Models: Heterogeneity and
Endogeneity

Glenn Ellison

Massachusetts Institute of Technology

June 29, 2021

Glenn Ellison (MIT) Heterogeneous SIR Models June 29, 2021 1 / 20



Classic SIR Model

The SIR model (Kermack and McKendrick 1927) remains an elegant way
to bring out many intuitions.

Many economics papers use it or slight variants as their pandemic model.

Unit mass of agents are Susceptible, Infectious, or Recovered

Assume fractions S(t), I (t), R(t) evolve as:

İ (t) = S(t)I (t)R0γ − γI (t)

Ṙ(t) = γI (t)

Ṡ(t) = −S(t)I (t)R0γ

Motivation:
1 Infectious agents recover at Poisson rate γ. They are infectious for

1/γ periods on average.
2 Infectious agents interact in a manner that would transmit with prob.

R0γdt in each dt. Totals R0 on average while infectious.
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Properties of the SIR Model

1 R0 is a critical parameter.

When R0 < 1 the infection-free state (S , I ,R) = (1, 0, 0) is a locally
stable steady state. A small infection introduced will die out.

When R0 > 1 the (1, 0, 0) steady state is unstable and a small
infection will spread.

2 Growth rates

The growth rate, g(t) = d
dt log(I (t)), of the infectious is

g(t) = γR0S(t)− γ.

Practically, people estimate R0 early in a pandemic with a multistage
approach: Estimate γR0 from case/hospitalization growth rates,
estimate γ from contact tracing data; divide to get R0.

Estimating the R0 is of a new variant is harder because you need to
separately estimate S(0).
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Properties of the SIR Model

3 Herd immunity thresholds

Let S be such that (S , 0, 0) is a stable steady state if and only if
S < S .

The threshold is incredibly important. The effective R0 can be
temporarily reduced by limiting activity, wearing masks, quarantining,
etc., but the infection will resume spreading once restrictions are
removed if S > S (unless it has been completely eradicated).

In the classic SIR model S = 1/R0.

For the original strain if R0 ≈ 2.3 this will be about 0.44.
The Boris Johnson (α) variant may have R0 ≈ 3.5 =⇒ S ≈ 0.29.
The Modi (δ) variant may have R0 ≈ 5.5 =⇒ S ≈ 0.18.

One can think of vaccinations as reducing S(t).

SIR suggests we’ll need to vaccinate (or infect) 80% with a 90%
effective vaccine to reach herd immunity against the α variant.
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Properties of the SIR Model

4 Overshooting and Eventual Infection

An SIR model calibrated to COVID-19 predicts that an uncontrolled
epidemic reaches herd immunity quickly.

Many people (10-15%) are infectious when herd immunity is reached.
This leads to substantial “overshooting”.

Write S(∞) for the fraction who escape infection. Eventually there
will be (1− S(∞))R0 interactions of an Infectious with another. The
number of times an individual is hit is Poisson with mean
(1− S(∞))R0. This implies S(∞) = e−(1−S(∞))R0

.

The difference can be large. With R0=2.3 we have S = 0.44 and
S(∞) ≈ 0.14.

In several economic analyses policies are motivated by overshooting
(and hospital capacity).
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Limitations of the SIR Model

Epidemiologists modeling short-run dynamics typically augment the SIR
model in many ways: adding a state for exposed but not yet infectious,
adding a quarantine state, making recovery time distribution more flexible,
etc. These are particularly important for the feasibility of controlling the
epidemic via testing, contact tracing, quarantines, etc.

Two other concerns very important to the overall trajectory are:
1 Endogeneous Behavior

The SIR model treats R0 as a fixed primitive. In practice, people will
alter their behavior in multiple ways when infection rates are high.

2 Heterogeneity

In practice, contact rates vary dramatically depending on whether one
rides public transportation, frequents bars, works in a jobs that
involves close contact, lives in a crowded home, etc.

Also, when thinking about new variants, it is as if contact rates as
vary across vaccination statuses.
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Heterogeneous SIR Model with Uniform Matching

Consider an SIR variant with N groups.

Activity levels R01,R02, . . . ,R0N differ.

Members of group i have contacts with prob. R0iγdt.

i ’s contacts are in group j with probability R0j/
∑

k R0k .

This motivates a system of differential equations:

İi (t) = Si (t)
∑
j

βij Ij(t)− γIi (t)

Ṡi (t) = −Si (t)
∑
j

βij Ij(t)

Ṙi (t) = γIi (t)

with βij ≡ γR0i
R0j∑
k R0k

.
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Properties of the Heterogeneous Uniform SIR Model

To explore whether small infections spread, linearize changes in infection
rates in a neighborhood of I = 0 as İ (t) ≈ AS I (t).

The largest eigenvalue of AS is easy to find. It implies
1 Case Distribution

The principal eigenvector is v1 = (S0
1R01, . . . ,S

0
NR0N). Soon after an

epidemic starts cases will be distributed in these proportions.

2 Growth Rates

Once cases align as above a small epidemic will grow at rate

γ
(∑

i S
0
i R

2
0i∑

i R0i
− 1
)

.

Early growth will resemble that of a classic SIR model with parameter

R0 ≡
∑

i R
2
0i∑

i R0i
=
∑

i
R0i∑
k R0k

R0i = E (R0i ) + Var(R0i )
E(R0i )

.

Early estimates of growth rates will have estimated this weighted
average, not the arithmetic mean of the R0i .
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Heterogeneous SIR Model with Homophilic Matching

Many agents with high R0 will naturally interact with others with high R0:
public transportation, bars, neighborhoods with crowded housing, COVID
skeptics, etc.

Suppose the probability a contact of someone in group i is in group j is

pij =

{
h + (1− h)

R0j∑
k R0k

if j = i

(1− h)
R0j∑
k R0k

if j 6= i .

With total contacts from group i as above we get infection dynamics

İi (t) = Si (t)
∑
j

βhij Ij(t)− γIi (t), with

βhij =

{
γR0i (h + (1− h)

R0j∑
k R0k

) if j = i

γR0i (1− h)
R0j∑
k R0k

if j 6= i .

The parameter h ∈ [0, 1] captures the degreee of homophily in matching.
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Properties of the Heterogeneous Model with Homophily

The model is not as tractable as the uniform model, but one can derive
several resuts about herd immunity:

1 Each population must be internally stable.

If S0
i hR0i > 1 for any i , then (S0, 0) is unstable.

2 Herd immunity again depends on something like a weighted average

Otherwise, (S0, 0) is unstable if
∑

i
R0i∑
k R0k

1
1−hS0

i R0i
(S0

i R0i − 1) > 0

and stable if
∑

i
R0i∑
k R0k

1
1−hS0

i R0i
(S0

i R0i − 1) < 0.

3 Homophily shrinks the herd immunity region

If a disease-free equilibrium (S0, 0) is unstable for some h it is
unstable for all larger h. (Homophily matters when there is
heterogeneity in contact rates.)
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Implications: Herd Immunity

Many discuss COVID as homogenous SIR with parameter R0.

This leads one to expect a herd immunity threshold of Ŝ = 1/R0.

For example, in the uniform model with R0 = (3.5, 1.5, 1, 0.5, 0.5),
R0 = 2.3 and Ŝ0 = 0.44. This suggests we need 56% vaccinated.

1 Potentially large overestimation of required infections/vaccinations

The uniform model can reach herd immunity with 14% vaccinated.

With homophilic matching and h ≈ 1 we need 21% vaccinated.

2 Vaccine targeting

In the uniform model, herd immunity is always reached most quickly
by vaccinating those with the highest R0i .

Vaccine allocation involving hassle costs is unfortunate.

Also affects calculations when effectiveness is a choice variable.

In the homophilic model, optimal targeting is less extreme.
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Implications: Difficulties in Calibration and Forecasting

Predicting the course of an epidemic is inherently difficult.

1 Estimating the parameters of a heterogeneous model is hard.

Early growth rates let one estimate R0. Some have augmented with
contact survey data, but these may not reflect COVID transmission.
Parameters of low-activity groups will be particularly difficult.

2 Epidemic paths can depend on activity levels in low-activity groups

3 Effects of policy relaxations and new variants can also depend greatly
on details of lower-activity groups.
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the epidemic is taking off, and a partial relaxation about a month later that allows activity levels to

return to 70% of their pre-lockdown values. The left panel plots new daily cases. The right panel plots

cumulative cases to date. The vertical lines mark the dates when the initial lockdown starts its phase

in and the date on which it is relaxed. The epidemics rise at very similar rates in the two populations

prior to the lockdown. They have similar declines once the initial severe lockdown is imposed. Indeed,

in the right panel it is very hard to see any difference in the courses of the two epidemics up through

the date at which the relaxation occurs.

Despite this similarity in the initial run up and through the lockdown, the two epidemics follow very

different paths following the relaxation. As in the previous example, this reflects that the parameters

were chosen so that activity levels in the less active subpopulations differ. In one population, whose

outcomes correspond to the solid blue line, the relatively low activity populations have R0i = 1.5.

When we relax distancing rules, a large second wave takes off in these groups, infecting nearly three

times as many people as had the first wave. In the other population, corresponding to the dotted

red line, the low-activity populations have R0i = 0.7 and this makes the second wave much smaller.

Difficulty in distinguishing the blue from the red population at the point when the relaxation is

occurring will make it difficult to predict which future course we should anticipate.
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Figure 3: Example of epidemics that diverge after a policy relaxation. The figure graphs new daily
cases and cumulative cases for heterogeneous SIR models with h = 0.7 under a policy intervention
involving a severe lockdown and a partial relaxation. Model 3 has R0 = (3.63, 3.63, 1.5, . . . , 1.5). Model
4 has R0 = (3.55, 3.55, 0.7, . . . , 0.7).
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Implications: Overshooting

The overshooting in the classic SIR model may not be practically relevant:
people would isolate on their own if anything like 10% were currently
infectious, so epidemics proceed more slowly.

Overshooting becomes more salient in heterogeneous models.

1 Extra dimension of overshooting

Overshooting is a group-by-group phenomenon. Infections of the less
active contribute little to herd immunity.

2 Temporary lockdowns

Temporary lockdowns become more appealing when vaccination
campaigns will have an effect more quickly.

Uncontrolled epidemics initially grow in proportion to activity. The
optimal path to herd immunity has even more concentrated cases.
Targeted lockdowns can get us closer to this path.
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Endogenous Interaction

The time path of the COVID
pandemic has looked very
little like the early forecasts
of an uncontrolled epidemic.

6 JOURNAL OF ECONOMIC PERSPECTIVES

Figure 1. Figure reproduced from Ferguson et al. (2020) Figure 1A: “Un-

mitigated epidemic scenarios for GB and the US. (A) Projected deaths

per day per 100,000 population in GB and US.”

Some Conceptual Lessons from the Standard SIR Model

When a serious contagious disease becomes prevalent, two things will typically

occur: people will modify their behavior to avoid getting sick; and governments

will enact policies aimed at slowing or stopping the spread. We can think of the

original R0 as a compound parameter, one that embodies both the underlying bi-

ological ability of the pathogen to jump from person to person in various types of

interactions as well as the number of interactions of each type that people have

in the ordinary course of their daily lives.7 As self-interested behavior and gov-

ernment policies reduce interactions, it is as if the R0 parameter in the equation

describing how infections transmit is reduced to some time- and state-dependent

Rt0. 8 It is important to remember that all the parameters of SIR models are simple

encapsulations of more complex biological events. The cycle of infection involves

the population biology of the pathogen outside the host, the behavior and popula-

tion biology of the host and the interaction of the pathogen and the host. Spatial,

temporal and between-host differences in the details of these events lead to the

heterogeneity of the parameters that modelers now find important. While much of

7This approach has parallels to a classic predator-prey theory in biology, whose models have
almost exactly the same form and dynamics as an SIR model. In that literature, there is a
parameter governing transition from “freely roaming” to “prey,” which is a compound parameter
with a fixed attack rate for a particular predator-prey combination as well as a contact rate
between predator and prey, which can vary geographically and over time. See Gotelli (2008) for a
description.

8See Chernozhukov, Kasaha, and Schrimpf (2020) and Goolsbee and Syverson (2020) for em-
pirical evidence on the impact of endogenous behavioral changes and various government policies.

It has been widely recognized that such dynamics are implausible when
people have the option to self-isolate.

Economists and epidemiologists have approached this in two ways:

1 Reduced form responses

2 Rational activity levels
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Endogenous Interaction: Reduced Form Responses

A classic approach is assume to to assume directly that distancing in
response to concurrent death (or infection) rates leads to dynamics like

İ (t) =
1

(1 + aḊ(t))k
R0Si (t)I (t)− γI (t)

Calibrations by Atkeson et al. (2021) and Weitz et al. (2020) support
endogenous distancing.

Infection/death growth rates drop much more quickly than the decline in
S(t) could account for. They then stabilize instead of dropping further.

Figure 2: Location and sampling uncertainty. The black solid line represents the median posterior
estimate. The two dash-dotted bands in both charts contain two thirds of the posterior probability
at each point in time and the two dashed bands, 0.95% of the posterior probability. The growth
rates of death is estimated according to the fitted mixture of modified log-logistic density functions.
Day 0 is the earliest date when the cumulative death toll reached 25 in each location.

38
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Endogenous Interaction: Reduced Form Responses

A reduced-form model can easily account for main features of the
epidemic: the low peak and very slow (almost plateau-like) declines: we
just need activity at the steady state death rate to keep Rt near one.

Other features don’t fit as well: mobility data suggests activity increased
even before the peak; multiple peaks

One augmentation the departures suggest is pandemic fatigue.

Endogenous activity models can have cycles driven by the lag between
infections and deaths. Seasonal and variant-driven changes in
transmissability are probably more important in practice.
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Endogenous Interaction: Rational Responses

In a myopic model no agents will distance when I is low, all will distance
when I is high, and agents will mix for intermediate I . Mixing will keep
the risk where agents are indifferent.

This effect remains present in models with
foward-looking agents and can lead to
long-lasting infection plateaus.

Equilibrium Social Distancing 15

Figure 3: Equilibrium disease prevalence and social distancing across stages of epidemic.
The blue curve shows disease prevalence and the red curve shows aggregate exposure.

consistent with equilibrium to have a fraction ε∗(t) exposing themselves fully and have

the remainder (1− ε∗(t)) fully socially distancing themselves.
For ease of comparison of disease paths between the non-controlled biological model

and the equilibrium under social distancing, Figures 4, 5 and 6 show the evolution of

individuals in each health state separately, while Figure 9 at the end of the paper shows

all the paths superimposed.

The dynamic equations in the Corollary show another interesting feature, namely

that during the social distancing phase, the measure of susceptible individuals decreases

linearly at a rate −γI∗, while the measure of recovered individuals increases linearly at
rate γI∗. In addition, one sees that the rates of change are proportional to the critical

threshold I∗. In other words, we can relate the speed of change over time during the

social distancing phase to the magnitude of the biological and preference parameters. For

example, an increase in infectivity β will cause the susceptibles to decrease more sharply

and the recovered to increase more sharply. Similarly, the more severe the disease is, as

measured by lower flow utility while infected πI , will likewise make susceptibles decrease

faster and that of the recovered increase faster. The linear segments on the S∗(t) and

R∗(t) curves can be verified in Figures 4 and 6.

Next, consider how a change in the preference parameters influences the social dis-

tancing decisions in equilibrium and how they alter the trajectory of the disease over

time. We will do this in terms of effects on peak prevalence and on the duration of the

plateau phase with elevated disease prevalence. To trace the effects of changes in the

Endogenous social distancing improves social welfare relative to the SIR
model. Social distancing is not socially optimal because individuals exert a
negative externality when infected. A social planner would start distancing
earlier and lower the plateau.

Accounting for effects on endogenous distancing is potentially important
to many policy analyses.
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Endogenous Interaction: Rt ≈ 1

Estimates of the effective transmission rate (which would be S(t)R0 in
SIR) show that it has stayed remarkably close to one for a very long time.

In the heterogneous SIR model this requires that
∑

i R0i (Si (t)R0i − 1) ≈ 0
where I am now using R0i for endogenous activity rates.

Groups with R0i well below one can’t contribute much to the sum.

Hence, estimates suggest that (pre-vaccines) the endogenous models must
have worked pretty well even for those who stayed active.
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